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1. Introduction

The low momentum expansion of superstring theory is known to lead to an effective action

for the massless mode which is simply supergravity. Going beyond lowest order in the

string length leads to an effective expansion of the action in power of α′. Higher powers of

α′ correspond to higher derivative terms which provide information on various intrinsically

stringy effects, and knowing them leads to a number of applications.

These higher order corrections are relevant to black hole physics in several ways. For

example, they are important for stretching the horizon if the classical black hole solution

does not have one [1]. They also lead to a modification of the Bekenstein-Hawking area

law for the entropy [2]. Consistency of string theory demands an agreement between

calculations of entropy in this setting with microscopic state counting, and therefore higher

derivative corrections allows us to better understand this correspondence

– 1 –



J
H
E
P
1
0
(
2
0
0
8
)
0
4
7

In the context of AdS/CFT, α′ corresponds to 1/
√
λ = 1/

√

2g2
YMN , providing valuable

information on gauge theory at strong coupling [3, 4]. They also give finite (large) coupling

corrections to the infinite coupling limit of correlation functions.

We are here concerned with the corrections at first non-trivial order in the low mo-

mentum expansion of type IIB superstring theory, which are order α′3 with respect to

the original classical supergravity action. Computing these corrections turns out to be

very non-trivial, and several alternative methods have been proposed ([5, 6] and references

therein). The greatest progress has been made by calculating string scattering amplitudes

and writing down an action which reproduces them. The well known R4 term was cal-

culated in this way [7]. When scattering amplitudes involve Ramond-Ramond fields the

calculation is much more involved, but nevertheless some progress has been made [8, 9].

The order α′3 corrections may be found at the linearized level by computing the inte-

gral of a scalar function of the linearized scalar superfield [10] over half the type IIB super-

space [11]. Unfortunately, there are profound difficulties in formulating a supersymmetric

description of the full nonlinear theory at this order [6]. However, there is a suggested

exact action at order α′3 in the special case in which only the metric and five-form field

strength are non-trivial [2], which was important for showing that the classical D3-brane

geometry is unrenormalized at this order. In this case it has been argued [12] that the

obstruction to a chiral measure in the type IIB theory is circumvented.

In this paper the tensor structure of these corrections is explicitly computed and re-

duced to a manageable form. As a first step, the fermionic integral is reduced to a sum

of Lorentz scalars following [13]. This leads to a large sum of complicated contractions

of four powers of a certain tensor R. It is shown that this sum must vanish unless the

representation content of R is equal to 770 ⊕ 1050+, so that the sum acts like a form of

Young projection. Accordingly, one can write the whole set of terms as the Young-projected

version of a greatly reduced set. In the process one must find basis of tensor monomials

independent with respect to all the symmetries of the tensors that compose them. Along

the way one finds that there are certain dimensionally-dependent identities that can be

used to further reduce the number of terms. A new method for discovering these identities

is also presented.

The outline is as follows. Section 2 discusses the form of the higher derivative correc-

tions for the type IIB N = 2 supergravity that only involve the five-form ¡and the metric.

The ansatz of [4] for the form of these corrections is reviewed, as well as some of its con-

sequences for supersymmetric solutions. Section 3 is concerned with the computation that

was performed to obtain these terms. A new method for discovering dimensionally depen-

dent (Schouten) identities is described. For clarity, our results are summarized in section

4. Some applications are discussed in section 5. We comment on the conditions under

which the five-form corrections might be neglected, and in particular show that the results

of [3] are valid. Finally we perform an application of our result to the computation of α′

corrections to the thermodynamics of charged black holes, following an approach partially

justified by [3].
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2. Higher derivative corrections

2.1 Supersymmetric completion of R4

In this section and the following we review some basic results on higher derivative correc-

tions to the supergravity action. Useful references are [4].

The low-momentum expansion of the IIB superstring leads to type IIB supergravity

and a series of higher derivative corrections which can be written as a series in α′, the

fundamental string length:

α′4SIIB = S(0) + α′S(1) + · · · + (α′)nS(n) + · · · (2.1)

There are no n = 1 or n = 2 terms at tree-level and one-loop in the string coupling, and

they are not expected to appear at all so that the first correction to the action is an α′3

effect relative to S(0). Since [α′] = [L2], this correction corresponds to terms with eight

derivatives. There are ambiguities in these terms, since string amplitudes only determine

the action up to terms which vanish on-shell. In a certain scheme one can write the well-

known R4 term [7] in terms of the Weyl tensor C:

c1
α′

∫

d10x
√−ge−φ/2f (0,0)(τ, τ̄)C4 (2.2)

C4 = −1

4
CpqrsC

tu
pq C vw

rt Csuvw + CpqrsC t u
p r C

v w
t q Cuvsw.

Here c1 is a constant and τ = τ1 + iτ2 = C(0) + ie−φ is the complex scalar field, where C(0)

is the Ramond-Ramond scalar and φ is the dilaton. The field τ parameterises the coset

space SL(2, R)/U(1). The function f (0,0)(τ, τ̄ ) is given by the Eisenstein series

f (0,0)(τ, τ̄ ) =
∑

(m,n)6=(0,0)

τ
3/2
2

|m+ nτ |3/2
. (2.3)

The exact form of this correction was shown to be a consequence of full non-linear super-

symmetry in [14]. The idea is to impose closure of the on-shell supersymmetry algebra

order by order in α′, which can be used to determine the modular form f (0,0).

There are many terms that are related to C4 by supersymmetry. Among these, we are

particularly interested in the ones involving only the five-form F5 and the metric. There

is a large class of solutions where these are the only relevant fields, such as the superstar

geometries [15, 16], the bubbling solutions of Lin, Lunin and Maldacena [17] and the

Gutowski-Reall black holes [18]. Knowing these companion terms to C4 would allow us, in

particular, to check under which conditions these solutions receive corrections at O(α′−1).

The supersymmetric completion of the C4 term when only the five-form is present was

suggested in [4], and we review the argument next.

The physical content of Type IIB supergravity can be packaged in a scalar superfield

Φ(x, θ), where θa, (a = 1, . . . , 16) is a complex Weyl spinor of SO(1, 9). The superfield

obeys the conditions

D̄Φ = 0, D̄4Φ̄ = 0 = D4Φ (2.4)

– 3 –
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where the first constraint insures independence of θ̄, and the last two inforce the free field

equations of motion on the components of Φ. We can write Φ as

Φ = τ + θΛ + θ2(G+ · · · ) + θ3(Dψ + · · · )
+θ4(R +DF + FF + · · · ) + θ5(DDψ̄ + · · · ) + · · · + θ8(D4τ̄ + · · · ) (2.5)

where the dots represent the terms that make each expression supercovariant. Under a

supersymmetric transformation labeled by ǫ, we have δǫΦ = ǫ∂Φ/∂θ. Since the supersym-

metry transformations are well known [19] we can use them to determine the exact form

of the components of the scalar superfield. In particular,

δǫψM =

(

DM +
i

16 · 5!Γ
N1...N5FN1...N5

ΓM

)

ǫ+ · · · ≡ Dǫ (2.6)

which implies that

δǫ(D[MψN ] + · · · ) = (RMN + · · · )ǫ, (2.7)

where

RMN =
1

8
RMNPQΓPQ − i

16 · 5!Γ
K1...K5Γ[MDN ]FK1...K5

− 1

(16 · 5!)2 ΓK1...K5Γ[MΓL1...L5ΓN ]FK1...K5
FL1...L5

. (2.8)

Therefore, we determine the quartic term of the scalar superfield to be

(θΓMNP θ)θΓPRMNθ = (θΓMNP θ)(θΓQRSθ)RMNPQRS (2.9)

where

RMNPQRS =
1

8
gPSRMNQR +

i

48
DMFNPQRS

+
1

384
FMNPTUF

TU
QRS . (2.10)

This expression should be appropriately symmetrized as implied by the contraction with

the gamma matrices.

One can use linearized supersymmetry to show that the interactions in S(3) are con-

tained in the integral of a function of Φ(x, θ) over half the superspace. On the other hand,

non-linear supersymmetry shows that the coefficient of the C4 term must be f (0,0). We are

then led to the proposal that C and F5 are present in S(3) in the combination

S
(3)
R4 =

∫

d10x
√−gf (0,0)(τ, τ̄ )IR4

IR4 =

∫

d16θ[(θΓMNP θ)(θΓQRSθ)RMNPQRS]4 + c.c.. (2.11)

where the result is written in the Einstein frame. Besides the C4 term, there are other

contributions with well defined relative coefficients, such as F 8
5 , (∇F5)

4 and various cross

terms. Notice this is the same result obtained more rigourously in [12].

– 4 –
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2.2 Representation content of the integral

The Grassmannian integral (2.11) looks rather formidable. Direct evaluation on a specific

background would involve doing a summation of 16! > 1013 terms, and it still wouldn’t tell

us the tensorial form of the corrections to the equations of motion. We want to compute

the tensor structure of the terms packaged in the integral IR4 . We start by writing

IR4 = Ii1j1k1...i8j8k8Ri1j1k1i1j2k2
. . .Ri7j7k7i8j8k8

(2.12)

where

Ii1j1k1...i8j8k8 =

∫

d16θ(θ̄Γi1j1k1θ) . . . (θ̄Γi2j2k2θ). (2.13)

This is the symmetric product of eight three-indexed antisymmetric tensors. Group

theory tells us that this product contains 33 scalars in ten dimensions, and 24 in eleven

dimensions. We conclude that there are 24 parity-even and 9 parity-odd Lorentz singlets

in this integral. Using a graph-based approach, a particular basis for these singlets was

found in [13], along with their respective weights in the integral (2.13). These results are

presented in tables 2, 3 in the appendix. Thus one may recast the integral IR4 as a sum of

Lorentz scalars:

IR4 =





∑

i

aisi +
∑

j

bjej





i1j1k1...i8j8k8

Ri1j1k1i1j2k2
. . .Ri7j7k7i8j8k8

.. (2.14)

In this way the tensorial structure of IR4 is made manifest, and amenable to calculation.

Now let us consider a single factor of

(θΓMNP θ)(θΓQRSθ)RMNPQRS. (2.15)

Necessarily the indices MNP and QRS will be antisymmetrized, and only the part of R
that is symmetric under the interchange of these triplets will be relevant. However, there

are further restrictions coming from various Fierz identities. In fact we have that

(16 ⊗ 16 ⊗ 16⊗ 16) = 770 ⊕ 1050+, (2.16)

and so the SO(9, 1) representation content of R is reduced to 770 + 1050+. In particular,

this implies that in equation (2.10) only the Weyl part of the Riemann tensor is important

(this is the 770). The ∇F5 term only contains a 1050+ representation, and this means

that in practice only its traceless self-dual part will be relevant, that is we can impose from

the start

∇aF
a
bcde = 0, F5 = ⋆F5. (2.17)

The (F5)
2 term does not contain a 770 piece. Its 1050+ content is given by applying the

relevant Young projector,

(Tabc,def )|1050+ =
1

2

[

1

2
(Tabc,def − 3Tabf,dec − Tpab,depδfc + 2Tpae,pdbδfc)

− 1

4!
ǫ p1...p5

abcde Tp1...p5f

]

. (2.18)
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where antisymmetrization in each triplet [a, b, c], [d, e, f ] is implied, as well as symmetriza-

tion in the pair of triplets. If we impose self-duality of the five-form this projector reduces to

(FabcmnF
mn

def )|1050+ =
1

2
(FabcmnF

mn
def − 3FabfmnF

mn
dec ) (2.19)

where once again the right-hand side should be antisymmetrized appropriately. The tensor

∇F5 is already in the right representation if it obeys the lowest order equations of motion.

The previous equations determine the parts of the five-form that contribute to the α′

corrections. Similarly, only the Weyl part of the Riemann tensor comes into IR4 . These

conditions will be important later, since if we impose them from the start we can simplify

matters tremendously. On the other hand they also determine in which cases the five-form

can be neglected or not, which up to now had been dealt with in an ad hoc fashion in the

literature.

2.3 Corrections to supersymmetric solutions

For solutions of the type IIB action involving only a non-constant metric and five-form,

and that in addition preserve some fraction of the supersymmetry, one can already make

some statements regarding α′ corrections [4]. Set all fields to zero except for the metric

and the five-form. Then equation (2.7) implies

[DM ,DN ]λ = RMNλ (2.20)

for any spinor λ. Now suppose the background preserves some fraction of the supersymme-

tries. Then there is a non-trivial solution for the Killing spinor 0ψ depending on a number

of free parameters that corresponds to the number of preserved supersymmetries. Clearly

the left-hand side of the equation above vanishes when applied on a Killing spinor, so we get

[DM ,DN ]0ψ = 0 = RMN
0ψ, (2.21)

which we can rewrite as

(θΓMNP θ)(θΓQRS 0ψ)RMNPQRS = 0. (2.22)

This is nothing but the usual integrability condition on the Killing spinor, which tells us

which projection conditions it satisfies. Now consider the object

Rαβγδ ≡ ΓMNP
[αβ ΓQRS

γδ] RMNPQRS , (2.23)

through which IR4 can be written as

IR4 =

∫

d16θ (θαθβθγθδRαβγδ)
4 = (R4)[α1α2...α15α16]. (2.24)

If there is some value of the spinor index α such that Rαβγδ vanishes, then clearly so does

IR4 . The condition (2.22) tells us that, in an appropriate basis, there are precisely N such

values, where N is the number of preserved supersymmetries of the background. Since the

dilaton multiplies R4, this leads us to conclude that, for supergravity solutions involving

– 6 –
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only the metric and the five-form that preserve at least one supersymmetry, the dilaton

will not get sourced by these terms.

The corrections to the equation of motion for the metric and the five-form are obtained

by considering

δS(3) ∝
∫

d16θ [(θΓMNP θ)(θΓQRSθ)RMNPQRS]3δR = (R3δR)[α1α2...α15α16]. (2.25)

If a solution preserves more than four supersymmetries, then necessarily the R3 factor will

vanish since each factor of R annihilates the Killing spinor. We conclude that

If a solution is more than 1/4 BPS, then it receives no corrections at O(α′−1).

In particular, 1/2 BPS solutions like the LLM bubbling geometries [17] do not receive

corrections at O(α′−1). The full D3-brane solution has been shown explicitly to remain

unrenormalized to this order [4].

3. Computing IR4

3.1 Outline of the computation

The computation of the O(α′−1) corrections reduces to performing the tensor contractions

in equation (2.14). However there is still a long way to go before getting an explicit,

tractable result. First of all, there are still too many terms. For instance, each of the parity-

even terms in table 2 has to be properly symmetrized, leading to (3!)8 × 8! terms. One can

take advantage of the fact that the singlets are contracted into the fourth power of R, and

symmetrize this instead. Imposing R = R[i1j1k1][i2j2k2] and symmetry for the interchange

1−2, then Ri1j1k1i2j2k2
. . .Ri7j7k7i8j8k8

can be symmetrized with only hundred and five terms

corresponding to various permutations of 1, . . . , 8. This combination is then contracted

against the unsymmetrized Lorentz singlets si and ei, leading to a set of scalars in R4.

The resulting sum of monomials in R4 is very special, because it should be explicitly

zero if evaluated on an R which is not in the 1050+ or 770 irreps. For this to be true, it

can only be that the sum of terms is explicitly Young projected. That is, if we substitute

each R in the sum by its Young projection into these irreps, then after simplification we

should end up exactly with the same set of terms. This is a very strong constraint on the

sum, and is a useful check on our computation. It also means that one can choose to work

with a tensor R which is explicitly in these representations from the start. In particular,

it is useful to perform the substitution:

Rabcdef → gadCbcef + Tabcdef (3.1)

where Tabcdef is the piece of R in the 1050+ irrep, namely

Tabcdef = P1050+

(

i∇aFbcdef +
1

8
FabcmnF

mn
def

)

and C is the Weyl tensor. The g C piece should be appropriately symmetrized. This form

for R is useful since it allows us to simplify all terms in the sum that have traces. In

particular, all double traces of R vanish.

– 7 –
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One can then focus on the five different types of resulting terms separately, namely

C4, C3T , and so forth all the way to T 4. To simplify each set of terms one must use

the various symmetries of the tensors. These include not only mono-term symmetries like

antisymmetry or symmetry of indices, but also multi-term symmetries like the cyclic Ricci

identity for the Weyl tensor. The former involves defining a canonical order for the index

structure, a prescription on how we should rearrange the indices in an expression so that it

can be compared to others. It was only a few years ago [20] that an efficient algorithm was

designed that accomplishes this canonicalisation for arbitrary symmetries. The multi-term

symmetries are encoded in the Young projector of a tensor after modding out by monoterm

symmetries. The resulting expressions have the multi-term symmetries explicit, so one

does not need to impose them. Using these symmetries one can build basis of independent

monomials, in terms of which all terms can be written, leading to compact expressions.

There is a set of identities which can be used to further reduce the number of inde-

pendent scalars. These are dimensionally dependent identities (also known as Schouten or

Lovelock identities) which arise by antisymmetrizing over d+1 indices in d dimensions. The

CT 3 and T 4 scalars have at least twenty-two indices, which allows one to antisymmetrize

over eleven of them and contract with the remaining, leading to complicated relations

between scalars. We explicitly build these identities for CT 3 type scalars.

One can avoid working with the parity-odd singlets ei by imposing T to obey a self-

duality condition. This is analogous to throwing away all terms involving double traces

of R and using the Weyl tensor instead of the Riemann curvature. The construction of a

basis for monomials that include the tensor T is made difficult by the fact that the Young

projector for T includes an epsilon tensor. We split the problem into two steps, obtaining

first a basis of monomials in which T is taken to be in the 2100 representation and later

finding relations between the basis elements when self-duality is imposed. It turns out that

these relations already include dimensionally dependent identities. This leads to a new

method of determining these identities, previously unknown to the author’s knowledge.

Once one has constructed monomial basis, the results can be written in terms of these

by solving a linear system of equations. Along the way several consistency checks on the

result were performed.

3.2 The computer packages

The computations described above involve the manipulation of typically thousands of

terms. The main package that was used is the recently released Cadabra [21]. Among

many other functionalities it allows the definition of tensors directly through their Young

tableaux and includes the [20] algorithms for canonicalisation. The usage of Young tableaux

allows for the program to recognize multi-term symmetries. In particular, one can com-

pute basis of tensor monomials like R4, or decompose a set of terms into one. All tensor

manipulation and simplification were performed in Cadabra. The computation of basis of

tensors which satisfy a self-dual property is not yet implemented in this package, which

led to the use of Mathematica [22] for basis building and decomposition for all scalars that

involved the tensor T .

– 8 –
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3.3 R4 terms and parity matters

As a first step we need to contract the 24 + 5 Lorentz singlets of tables 2, 3 with the 105

terms coming from symmetrizing the tensor

Ri1j1k1i2j2k2
. . .Ri7j7k7i8j8k8

(3.2)

over 1,. . . ,8. The resulting contractions are simplified by canonicalisation and by not in-

cluding any terms which involve double traces of R. This is justified since we are going to

substitute R by terms which have no double traces. The parity-even terms follow straight-

forwardly by this procedure, giving rise to over 450 monomials which we will indicate

schematically as
∑

even R4. The parity-odd ones are much harder, since they involve a

ten-dimensional epsilon tensor, leading to tensor objects sporting over thirty indices. The

resulting expressions are very hard to canonicalise. Luckily, one does not need to include

these parity-odd terms at all.

The specific sum of Lorentz singlets given by tables 2, 3 in the appendix has necessarily

to be very special. Consider the following simple example. Take G5 to be a 5-form in ten

dimensions, and Ĝ5 = 1
2(1 + ⋆)G5 to be its self-dual part. Then we have

1

2
GabcdeG

abcde +
1

2.5!
ǫabcdefghijGabcdeGfghij = ĜabcdeĜ

abcde. (3.3)

On the LH side we have a specific combination of a parity-even and parity-odd contractions

of G5, which can be written as a single scalar that involves only Ĝ5. Analogously, the sum

of parity-even and parity-odd singlets involved in the integral (2.13) are such that when

contracted on R4 the resulting sum of monomials can be rewritten in terms of scalars

composed of the sum of the 770 and 1050+ pieces of R.

The parity-odd monomials are related to the fact that the integral picks out the 1050+

representation instead of the 1050− one. The sign of these terms reflects the choice. In

particular, suppose one imposes the self-duality condition on R from the start. Then at

the end we have a sum of monomials of the symbolic form

IR̂4 =
∑

p-even
(R̂4) +

∑

p-odd

(ǫR̂4) (3.4)

where R̂ only contains the 1050+ irrep. Then necessarily, flipping the sign of the parity-odd

contribution will result in the integral evaluating to zero. We conclude that

∑

p-even
(R̂4) =

∑

p-odd

(ǫR̂4). (3.5)

If we perform the split R → gC + T as in (3.1), where T is in the 1050+ irrep, we will

get terms of the form C4, C3T , . . . , T 4. The argument above then generalizes to the

statement that the parity-odd singlets contribute exactly the same as the parity-even ones

in all terms that involve at least one T . As long as we impose the self-duality condition by

hand, we need not worry about the contribution of the parity-odd terms, since they will

give the same result as the parity-even ones. This is explicit in the example with G5 that
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was given above: imposing self-duality on G5 on the LH side one sees that the parity-odd

term contributes exactly the same as the parity-even one.

In what follows we will only consider the contribution of the parity-even terms. We

proceed by performing the substitution (3.1) and studying each set of terms with differing

powers of C separately. In the end the contribution of the parity-odd singlets can be

obtained by simply doubling the coefficients of all terms with at least one power of T .

3.4 C4 terms

We start by studying the C4 type terms, for which the final answer is already known and

given in (2.2). The first step is to take
∑

even R4 and perform the substitution

Rdef
abc → δ

[d
[a
C

ef ]
bc]

.

This has to be done with care, since it corresponds to a 94 increase in the already large

number of terms. The best way is to replace each R in turn, contracting the Kronecker

delta and simplify by using the symmetry properties of R and C. At the end one gets only

ten terms, but we can further simplify by decomposing them into a basis of C4 monomials.

The construction of this basis is performed by Cadabra, and the result is given in the

appendix. The terms are decomposed with respect to this basis, giving the answer

≃ (0,−1/2, 0, 0, 0, 1, 0). (3.6)

Explicitly, this is

C4 = −1

2
CabcdC

ab
efC

ce
ghC

dgfh + CabcdC
a c
e fC

b e
g hC

egfh. (3.7)

This doesn’t seem to match the known form (2.2). Nevertheless one can show that the

cyclic Ricci identity for the Weyl tensor implies the equality of the two expressions.

Quite generally, the way to take into account multi-term symmetries [13] is by using

Young-projectors. Consider the Riemann tensor Rabcd. The Young projector involves

(2!)4 = 16 terms. One can mod out the monoterm symmetries to reduce this to three:

Rabcd =
1

3
(2Rabcd −Radbc +Racbd) (3.8)

The RH side then explicitly ’knows’ about the cyclic Ricci identity, as can be easily checked.

In fact this procedure is completely general. All the symmetries of a tensor are encoded

by its Young projector. After modding out the monoterm symmetries all that is left is an

expression that where the multi-term symmetries of the tensor are explcity.

A group theory computation tells us that in ten dimensions there are exactly seven

Lorentz scalars composed of four Weyl tensors. That is, after taking into account both

monoterm and multiterm symmetries, there are only seven independent monomials. The

most we can expect to simplify an expression is to decompose it in terms of a basis of this

sort. In practice one must substitute all terms in an expression and all basis elements by

their Young projected expressions (modulo monoterm symmetries) and solve a large linear

system of equations. This is exactly the operation performed by Cadabra, leading to the

result (3.6).
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3.5 C3T terms

Starting with
∑

even R4 and making the substitution R = R̂+ T , we keep only terms with

a single power of T in the resulting sum. Substituting each R̂ in turn by gC as in (3.4),

canonicalising and simplifying in each step, we arrive at a short result containing a handful

of terms. It is possible to simplify this result further by constructing a basis for C3T
monomials. However, in this case we can’t use Cadabra to do it because of the reasons

pointed out in the outline.

The trick to build such basis is to notice that the expression we arrive to must be

a Young projection. That is, if we take each factor of C and T in each monomial and

replace them by the Young projectors of the 770 and 2100 representations respectively,

then simplifying and canonicalising the resulting (large) expression should lead to exactly

the same one. This was checked to be indeed the case, which provides a non-trivial test of

the calculation. Notice that we did not use the 1050+ Young projector, since this would

lead to the presence of epsilon tensors which would only cancel with the parity-odd terms

that we did not keep explicitly.

To construct a basis we consider each element in the sum
∑

C3T separately, and see

how each one is expanded out after Young projection. The resulting expressions can be

thought of as the rewriting of each monomial in terms of a larger basis, a basis of scalars

which are only independent up to multi-term symmetries. We can call this the raw basis,

and we are interested in the refined basis which is obtained from this one by taking into

account all multi-term symmetries.

Each term in the sum is rewritten as a vector in the raw basis by Young projection.

These vectors can be thought of as forming the columns of a matrix, the matrix that receives

a monomial or sum of monomials and returns their Young projected version. Notice that

this matrix might turn out not to be square, since the Young projection of a certain scalar

yields an expression which doesn’t necessarily yield all possible independent scalars up to

multi-term symmetries. This is simply the statement that a given vector might not have

components along every basis element. In particular the sum might not contain all these

possible elements of the raw basis. If this happens, we take these and treat them as if

they were refined, Young projecting them and obtaining a new set of elements of the raw

basis. We can proceed in this fashion until the entire raw basis is obtained, along with

their Young projections.

This matrix will have a certain set of independent columns, which represent the ele-

ments of the refined basis. We expect this to be the number of independent scalars which

may be formed out of tensors in the 770 and 2100 representations. Actually, we get half

that number, since the 1050+ and 1050− irreps contained in 2100 are only distinguishable

through the use of an epsilon tensor, which we do not take into account in this matrix. It

turns out there are only two independent monomials of the form C3T , and the entire set

of these terms can be written in terms of only one of these:1

∑

C3T ≃ 1290240 CabcdCaefgCbfhiTcdeghi.

1For convenience tensor monomials will be written henceforth with all indices lower.
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For applications recall that the tensor Tabcdef must be in the 1050+ irrep, so that it

is written as

Tabcdef =
i

48
∇aFbcdef +

1

256
FabcmnF

mn
def − 1

768
FabcmnF

mn
def

suitably antisymmetrized in {a, b, c}, {d, e, f}, symmetrized for the interchange of the

triplets, and with self-dual five-form obeying ∇aFabcdef = 0.

3.6 C2T 2 terms

The computation of these terms proceeds along exactly the same lines as the previous case.

One can construct a refined basis of independent monomials in C2T 2. The result of the

computation can be written in terms of this basis, and we call this the refined result. The

difference from the previous case is that since T should be taken to obey a self-duality

condition, the monomials that make up the refined basis are not completely independent,

and the refined result can be simplified even further. To find the relations between refined

basis elements we make the replacement

Tabcdef → 1

2

(

Tabcdef +
1

4!
ǫ p1...p5

abcde Tp1...p5f

)

. (3.9)

In the resulting expressions we set to zero the terms with a single epsilon tensor and double

the contribution of the remaining, by the same argument that allows us to only consider the

parity even terms. The double epsilon tensors can then be rewritten as generalized Kro-

necker deltas, which expand out to a large set of terms. Decomposing back into the refined

basis, one ends up with a linear map in the form of a square matrix. This matrix acts as a

self-dual projector for monomials in C2T 2, and it has exactly ten eigenvalues one and some

zeros. One would expect this since ten is exactly the expected number of scalars contained

in (770)2 ⊗ (1050+)2 by group theory arguments. One also expects that the refined result

might be written as a sum of one eigenvectors of this matrix, since only the self-dual part

of T should contribute to IR4. If this wasn’t true, it would not be possible to write the

full set of C2T 2 as a sum of tensors in the (770)2 ⊗ (1050+)2 representations. The refined

result indeed satisfies this condition, providing a consistency check on the computation.

Finally, we can pick a set of monomials of the refined basis which are independent even

when self-duality is taken into account. Writing the refined result in terms of these we get:

∑

C2T 2 ≃ 1814400 CabcdCabceTdfghijTefhgij

+443520 CabcdCabefTcdghijTefghij

−241920 CabcdCaecfTbeghijTdfghij

−241920 CabcdCaecfTbghdijTeghfij

−7096320 CabcdCaefgTbcehijTdfhgij

−1612800 CabcdCaefgTbcehijTdhifgj

+6773760 CabcdCaefgTbcfhijTdehgij

−5806080 CabcdCaefgTbcheijTdfhgij. (3.10)
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3.7 CT 3 terms

The calculation of these terms suffers from a problem. The terms cubic in T coming from
∑

even R4 are not explicitly Young projected. That is, the expression is not invariant upon

replacement of C and T by their Young projectors, unlike the C4, C3T and C2T 2 cases.

One may suspect that this is due to the existence of Schouten identities. These identities

are derived by antisymmetrizing over d+ 1 indices in d dimensions. The CT 3 monomials

contain 22 indices, half of which can be antisymmetrized and contracted with the other

half, leading to non-trivial expressions which must be set to zero in ten dimensions.

We start by taking the CT 3 terms and subtracting off their Young projected version.

We want to prove the remainder vanishes in ten dimensions. To do this we must find the

relevant Schouten identities. One way to do it is to take one of the terms in the remainder

and try to construct such an identity out of it. Starting with

CabcdTabefghTcdeijkTfghijk (3.11)

then an expression which should be zero in ten dimensions and also contain this term is

given by

Ci1i2cdTabei3i4i5Ti6i7i8ijkTfghi9i10i11 , (3.12)

antisymmetrized in 1, 2, . . . , 11 and contracted with gi1agi2b . . . gi10jgi11k. The symmetries

of the tensors reduce the number of terms involved in the antisymmetrization, making the

calculation feasible. In the end over ninety thousand terms collapse to an expression involv-

ing less than two hundred, which must be set to zero in ten dimensions. For the moment

we are interested in the part of this expression which is not already Young projected, so

we subtract from it its Young projected part. It turns out that this first identity is not

enough to cancel the offending terms in the CT 3 calculation, so we need to find another

one. We take a term that doesn’t appear in the first identity,

CabcdTaefbghTcijefkTdikghj. (3.13)

An expression that contains this term and is zero in ten dimensions is given by

Ci1i2cdTai3i4bi5hTi6i7i8efkTi10ii9gi11j (3.14)

antisymmetrized in 1, 2, . . . , 11 and multiplied by gi1agi2b . . . gi10dgi11h. This time the sym-

metries of the tensors only reduce the 11! terms in the antisymmetrization by a factor of

2! 2! 2! 3!, making the computation very difficult. Nevertheless it is possible to carry it

out, and the resulting expression, after being purged of its Young projected piece, com-

bines with the first identity to precisely cancel out the CT 3 terms that are left after Young

projection. We conclude that the set of CT 3 coming from
∑

even R4 are explicitly Young

projected up to dimensionally dependent identities,2 as they should.

2The length of these identities prevents us from showing them here.
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3.7.1 A new method for computing Schouten identities

After this first consistency check, the calculation is carried out along the same lines as

for the C2T 2. A refined basis is computed and it is shown in the appendix. In terms of

this basis the CT 3 terms can be written compactly. This refined result can once again

be simplified further by using the self-duality condition on T to find relations between

the refined basis elements. However, the self-dual projection matrix turns out to be very

peculiar, for it is a defective matrix. Further, the refined result is not a one eigenvector of

this matrix, as it should be. We once again suspect that the culprit of this inconsistency is

a Schouten identity. This suspicion is reinforced by putting the defective matrix in Jordan

normal form, where it is constituted by a diagonal 13× 13 block of zeroes, a 5× 5 diagonal

block of ones, and a 2 × 2 Jordan block of the form

(

0 1

0 0

)

. (3.15)

Inspection of the CT 3 refined result reveals that it only has components along the block of

ones and the Jordan block, where it looks like (A, 0). If this piece of the refined result could

be set to zero this would show the correctness of the computation. Taking the previously

discovered Schouten identities and Young projecting them, one finds upon decomposition

into the refined basis they are equal, and exactly match the monomial sum that corresponds

to (A, 0). We are then justified in setting this component of the refined result to zero, and so

it becomes a one eigenvector of the self-dual projection matrix as we expect. Alternatively,

we can use the Schouten identity to eliminate one of the elements of the refined basis.

This reduces the dimension of the self-dual projection matrix by one, and also makes it

diagonalizable with eigenvalues zero or one. The refined result becomes a one eigenvector

of this matrix.

In this way, not only have we shown that our computation passes a very non-trivial

test of correctness, but we have also found a new method of computing Schouten identities.

Nowhere in the computation of the self-dual projection matrix is it required to perform anti-

symmetrizations of any sort, yet Schouten identities show up very naturally by looking at its

Jordan normal form. Any deviations from the expected pattern of diagonal blocks of ones

and zeroes signals the existence of such identities. These deviations show up in two forms:

• The existence of non-diagonal Jordan blocks. This is the case we’ve just analysed.

Schouten identities correspond to the zero eigenvectors of these blocks.

• The existence of eigenvalues different from one or zero. This case will occur in the T 4

terms. In this case Schouten identities are necessarily the eigenvectors corresponding

to these eigenvalues.

The fact that one can find out about dimensionally dependent identities from looking

at self-dual projection matrices is not totally unexpected, since the computation of these

brings in necessarily epsilon tensors, which “know” about the dimension of the vector space

these tensors live in.
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We conclude this subsection by giving the final answer for the CT 3 terms. We can pick

a subset of refined basis elements that are still independent after self-duality is imposed,

and write the refined result in terms of these. We find,
∑

CT 3 ≃ 483840 CabcdTabefghTcdeijkTfghijk

−4354560 CabcdTabefghTcdfijkTeghijk

−17418240 CabcdTabefghTcdfijkTegihjk

+8709120 CabcdTabefghTcefijkTdghijk.

3.8 T 4 terms

After what we’ve learned in the previous cases, there is no conceptual problem in need

of tackling for these terms. The T 4 terms coming from
∑

even R4 are not automatically

Young projected. We consider this to be the fault of Schouten identities, and proceed

by taking only the Young projected part of the sum. The refined basis is then obtained

straightforwardly. The construction of the self-dual projection matrix is quite involved this

time since there are forty refined basis elements carrying four factors of T , each of which

contributes with an epsilon tensor. These epsilon tensors can pair up in six possible ways as

well as all at once. Each pairing contributes a generalized Kronecker delta which breaks up

into possibly tens of thousands of terms, making this calculation the most computationally

intensive part of this work.

The self-dual projection matrix that results has several eigenvalues which are not

one or zero. These can’t be solved for explicitly since they are the five real roots of a

quintic polinomial, which makes it hard to write down the associated eigenvectors/Schouten

identities. The way around this is to take the matrix that equals this polinomial evaluated

at the self-dual projection matrix. In this way the space of Schouten identities is mapped

onto the null space of this new matrix, and we can build a basis for it. We proceed by

eliminating some of refined basis elements by using these Schouten identities. In the end

the self-dual projection matrix only has a set of zero eigenvalues plus five one eigenvalues,

which corresponds to the number of scalars present in the tensor product of four 1050+

irreps. Further the refined result is exactly a one eigenvector of this matrix, providing

another non-trivial check on our computation. Finally, we can find a reduced basis and

write the refined result in terms of these:
∑

T 4 ≃ 5153760 TabcdefTabcdghTegijklTfijhkl (3.16)

−7925040 TabcdefTabcdghTeijgklTfikhjl (3.17)

−2799360 TabcdefTabcghiTdejgklTfhkijl (3.18)

+22394880 TabcdefTabcghiTdgjeklTfhkijl (3.19)

+5806080 TabcdefTabdeghTcgijklTfjkhil (3.20)

4. Summary of results

Equations (3.7), (3.5), (3.10), (3.16) and (3.20) constitute the main results of this paper.

These terms represent the contribution of the even parity Lorentz singlets to IR4 . The
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ni Mi

-43008 CabcdCabefCceghCdgfh

86016 CabcdCaecfCbgehCdgfh

129024 CabcdCaefgCbfhiTcdeghi

30240 CabcdCabceTdfghijTefhgij

7392 CabcdCabefTcdghijTefghij

-4032 CabcdCaecfTbeghijTdfghij

-4032 CabcdCaecfTbghdijTeghfij

-118272 CabcdCaefgTbcehijTdfhgij

-26880 CabcdCaefgTbcehijTdhifgj

112896 CabcdCaefgTbcfhijTdehgij

-96768 CabcdCaefgTbcheijTdfhgij

1344 CabcdTabefghTcdeijkTfghijk

-12096 CabcdTabefghTcdfijkTeghijk

-48384 CabcdTabefghTcdfijkTegihjk

24192 CabcdTabefghTcefijkTdghijk

2386 TabcdefTabcdghTegijklTfijhkl

-3669 TabcdefTabcghiTdejgklTfhkijl

-1296 TabcdefTabcghiTdgjeklTfhjikl

10368 TabcdefTabcghiTdgjeklTfhkijl

2688 TabcdefTaghdijTbgkeilTchkfjl

Table 1: Higher derivative terms appearing in W .

contribution of the parity-odd terms is given as we’ve seen by simply doubling the terms

which contain at least one T . The result can be written as:

IR4 ∝ W ≡ 1

86016

∑

i

niMi

The tensor T is defined as

Tabcdef = i∇aFbcdef +
1

16

(

FabcmnF
mn

def − 3FabfmnF
mn

dec

)

,

where r.h.s. should be antisymmetrized in the triplets [abc], [def ] and symmetrized for their

interchange. Only the real part of W should be considered, and the five-form should be

kept explicitly self-dual, that is F5 = (1+⋆)
2 F5.

This result constitutes the full set of higher derivative corrections that involve the

metric and the five-form at O(α′3). The usual pair of C4 terms is accompanied by eighteen

other terms that give the contribution of the five-form. We have explicitly tested this result

by evaluating it on various supersymmetric solutions, having obtained a vanishing result

as expected.
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The type IIB supergravity action together with its first non-trivial correction in α′ is

then given by

SIIB =
1

16πGN

∫

d10x

(

R− (∂φ)2 − 1

4 · 5!F
2
5 + γ(φ)W

)

where GN ∝ α′4 and γ(φ) = 1
16(α′)3f (0,0)(τ, τ̄). The equation of motion for the five-form

as derived from this action is not consistent with the usual self-duality condition. Defining

γ̂ = 2 · 5!γ, this condition is generalized to [8]

(1 − ⋆)

(

F5 − γ̂(φ)
δW
δF5

)

= 0 (4.1)

and it is then consistent with the equation of motion.

5. Application to the thermodynamics of black holes

In general, if a solution to the lowest-order equations of motion contains a non-trivial five-

form, then its contribution at O(α′3) cannot be neglected. Previous work [3, 23] studied the

effect of α′ corrections to various asymptotically AdS5 ×S5 black holes. In [3] the authors

considered the near-horizon limit of the black D3-brane, which is dual to N = 4SYM at

finite temperature. The corrections to the geometry were obtained assuming that the only

relevant terms were C4, and from that the first term in the strong coupling expansion of

the free energy was obtained. We are now in a position to justify this procedure. An

expanded version of these examples and others will be presented in a separate publication

Since we are doing an expansion in powers of α′, the corrections to the equations of

motion from the α′ term in the action are to be evaluated on the lowest order metric and

five-form. For the AdS5 black hole solution the five-form is particularly simple, and the ten-

sor Tabcdef is vanishing. This means that all terms quadratic in T will vanish upon variation.

However, nothing prevents the C3T term from contributing to the equations of motion.

What saves the day here is that the tensor C3 that is contracting T must necessarily be

in the 1050− irrep to form a Lorentz scalar, and for the AdS5 black hole solution explicit

calculation of this tensor gives zero. If P± is the projector onto the 1050± irrep, then

C3T = (P−C3)(P+T )

and both factors are separately zero on this background.

In general, solutions which have a non-trivial five-form present will receive corrections

from the new terms found in this paper. As an application, we will now discuss corrections

to the thermodynamics of charged black holes with spherical or flat horizons. The solutions
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we are intested in are given by

ds210 =
√

∆
(

−(H1H2H3)
−1fdt2+(f−1dr2+r2dΩ2

(3,k))
)

+
1√
∆

3
∑

i=1

Hi

(

L2dµ2
i + µ2

i (Ldφi +Ai)
2
)

∆ =H1H2H3

3
∑

i=1

µ2
i

Hi
Hi = 1 +

qi
r2

f =k − µ

r2
+
r2

L2
H1H2H3 Ai =

q̃i
qi

(H−1
i − 1)dt. (5.1)

with qi related to the physical U(1) charges q̃i =
√

qi(kqi + µ). The constant L sets the

length scale. Here Ω(3,k) is the 3-manifold of curvature k = (0, 1), namely R3, S3 and the

coordinates µi, i = 1, 2, 3 are constrained by µ2
1 +µ2

2 +µ2
3 = 1. The dilaton is constant and

the five-form is given by

F5 = dB4+⋆ (dB4), B4 = −r
4

L
∆dt∧dΩ(3,k)−L

3
∑

i=1

q̃iµ
2
i

(

Ldφi−
qi
q̃i

dt

)

∧dΩ(3,k). (5.2)

The thermodynamics of these geometries have been considered previously in the litera-

ture [24 – 27]. In particular [23] considered α′ modifications to the thermodynamics of

these geometries by computing the corrections to the geometry induced by the C4 term.

However, there is no reason to believe the five-form doesn’t contribute here, and in fact

the full R4 set of terms yields quite a different result from simply considering C4. In fact,

a direct evaluation on the above solutions yields

W = 180
µ4

x8

where x ≡ r2+Q, whereas evaluating C4 alone yields a complicated expression. Notice also

that this result is very similar to the one obtained for the non-extremal AdS solution [3]

C4 = 180
µ4

r16
.

This lends further credence to the correction of our result. The evaluation of the full

α′ corrected geometry will not be done here. However, in [3] it was found that a naive

computation of the correction to the free energy by evaluation of the α′ correction to the

action on the lowest-order solution yielded the same answer as a full-fledged calculation

including corrections to the geometry. This gives at least some hope that something similar

will happen for the charged solution, and in what follows we assume this. We will leave

the full computation including corrections to the geometry to future work.

We consider the case where all three charges are the same. The thermodynamical

quantity of interest here is the Gibbs free energy density Ω = E − TS −∑i µiq̃i. Its

computation in supergravity corresponds to the strong coupling limit of the free energy of
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N = 4 SYM in the presence of chemical potentials for the R-charges. To lowest order in

α′ one has [23]:

Ω =
N2

8π2

(

−µ+
3

4
k2 + 2r2+k − 2qk

)

where we have set L = 1 and r+ is the position of the horizon determined by f(r+) = 0.

The leading order α′ correction is then

βδΩ = δS(3) = −β π3

16πG10

∫ +∞

r+

dr r(r2 +Q)γ

(

180µ4

(r2 +Q)8

)

. (5.3)

The AdS/CFT correspondence [28] gives

1

16πG10
=

1

2κ2
, L4 = 1 =

Nκ

2π5/2

so we get

δΩ = −15
N2

8π2
γ
µ4

x6
+

.

The α′3 corrected Gibbs free energy is then:

Ω =
N2

8π2

(

−µ+
3

4
k + 2r+k − 2qk − 15

8

ζ(3)

λ3/2

µ4

x6
+

)

.

The dependence on temperature is hidden by the relation

2πT =
µ

x
3/2
+

+ x
1/2
+

(

x+ − 3Q

x+ −Q

)

which can be obtained in the usual fashion from the Euclidean version of the geometry (5.1).

We have seen that the exact expression for the α′3 corrections that include the RR

five-form are of interest in a class of problems in which the three-form strengths vanish

and the dilaton-axion is constant. It would, of course, be very interesting to determine

the complete set of higher derivative corrections at this order, but for the moment this

seems to be a daunting task. The set of corrections computed in this paper leads to many

possible applications. One such application is to verify results existing in the literature

that use AdS/CFT methods to compute hydrodynamic coefficients for strongly coupled

gauge theories. It would be interesting to see if our results modify existing computations

which have only considered C4 corrections [29, 30].
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A. Decomposition of I
i1j1k1...i8j8k8
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Singlet si Coefficient ai/(2
19 × 36)

δi1i2δi3i4δi5i6δi7i8δj1j2δj3j4δj5j6δj7j8δk1k2
δk3k4

δk5k6
δk7k8

-269

δi1i2δi3i4δi5i6δi7j6δi8k5
δj1j2δj3j4δj5j7δj8k6

δk1k2
δk3k4

δk7k8
4968

δi1i2δi3i4δi5i6δi7k6
δi8k5

δj1j2δj3j4δj5j6δj7j8δk1k2
δk3k4

δk7k8
7956

δi1i2δi3i4δi5j4δi6k3
δi7j3δi8k5

δj1j2δj5j6δj7k4
δj8k6

δk1k2
δk7k8

-2304

δi1i2δi3i4δi5j3δi6k4
δi7k3

δi8k6
δj1j2δj4j5δj6k5

δj7j8δk1k2
δk7k8

70848

δi1i2δi3i4δi5k3
δi6k4

δi7k5
δi8k6

δj1j2δj3j4δj5j6δj7j8δk1k2
δk7k8

-24192

δi1i2δi3i4δi5k4
δi6j5δi7k6

δi8j7δj1j2δj3j4δj6k5
δj8k7

δk1k2
δk3k8

-32544

δi1i2δi3j2δi4k1
δi5i6δi7j6δi8k5

δj1j3δj4k2
δj5j7δj8k6

δk3k4
δk7k8

-3888

δi1i2δi3j2δi4k1
δi5i6δi7k6

δi8k5
δj1j3δj4k2

δj5j6δj7j8δk3k4
δk7k8

-26352

δi1i2δi3k2
δi4k1

δi5i6δi7k6
δi8k5

δj1j2δj3j4δj5j6δj7j8δk3k4
δk7k8

-20412

δi1i2δi3j1δi4k3
δi5k1

δi6k4
δi7k2

δi8k5
δj2j3δj4j5δj6j8δj7k6

δk7k8
124416

δi1i2δi3j1δi4k2
δi5k1

δi6j5δi7k5
δi8k4

δj2j3δj4k3
δj6j7δj8k6

δk7k8
10368

δi1i2δi3j1δi4k1
δi5j2δi6k4

δi7k3
δi8k2

δj3j6δj4j5δj7k5
δj8k6

δk7k8
196992

δi1i2δi3j2δi4j3δi5k1
δi6k2

δi7k3
δi8k4

δj1j4δj5j6δj7k6
δj8k7

δk5k8
-10368

δi1i2δi3j1δi4k3
δi5k2

δi6k1
δi7k6

δi8k5
δj2j3δj4j5δj6k4

δj7j8δk7k8
373248

δi1i2δi3j1δi4k3
δi5j4δi6k5

δi7k2
δi8k1

δj2j3δj5k4
δj6j7δj8k6

δk7k8
-331776

δi1i2δi3j1δi4k2
δi5k4

δi6k1
δi7k5

δi8k6
δj2j3δj4k3

δj5j6δj7j8δk7k8
-165888

δi1i2δi3j1δi4j2δi5j3δi6k1
δi7k4

δi8k5
δj4k2

δj5k3
δj6j7δj8k6

δk7k8
41472

δi1i2δi3k1
δi4k2

δi5k3
δi6k4

δi7k5
δi8k6

δj1j2δj3j4δj5j6δj7j8δk7k8
-10368

δi1i2δi3k1
δi4k2

δi5k3
δi6j3δi7k5

δi8k6
δj1j2δj4j6δj5k4

δj7j8δk7k8
-171072

δi1i2δi3j1δi4k2
δi5k1

δi6j5δi7k6
δi8k4

δj2j3δj4k3
δj6k5

δj7j8δk7k8
-238464

δi1i2δi3k1
δi4k2

δi5k3
δi6k4

δi7j5δi8k7
δj1j2δj3j4δj6j8δj7k5

δk6k8
-248832

δi1i2δi3j1δi4k1
δi5i8δi6j8δi7k8

δj2j5δj3j6δj4j7δk2k5
δk3k6

δk4k7
-62208

δi1i2δi3k2
δi4j3δi5k4

δi6j5δi7k6
δi8j7δj1j2δj4k3

δj6k5
δj8k7

δk1k8
63504

Table 2: Parity-even Lorentz singlets. Indices [ijk] should be antisymmetrized, and [1-8] sym-

metrized.

Singlet ei Coefficient bi/(2
21 × 36 × 5)

δi1i2δi3i4δi5j3δi6i7δj1j2δj4j5δk1k2
ǫi8j8k8j7k7j6k6k5k4k3

7

δi1i2δi3k1
δi4k2

δi5j3δi6j4δi7j5δj1j2ǫi8j8k8j7k7j6k6k5k4k3
42

δi1i2δi3j1δi4j2δi5j3δi6k1
δi7k2

δj4j5ǫi8j8k8j7k7j6k6k5k4k3
-294

δi1i2δi3j1δi4i5δi6j4δi7k1
δj2j3δj5j6ǫi8j8k8j7k7k6k5k4k3k2

-168

δi1i2δi3j1δi4j2δi5j3δi6j4δi7j5δj6j7ǫi8j8k8k7k6k5k4k3k2k1
264

Table 3: Parity-odd Lorentz singlets. Indices [ijk] should be antisymmetrized, and [1-8] sym-

metrized. There are four other possible singlets which don’t interest us since their contribution to

IR4 is zero.
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